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It is of fundamental interest to understand the behavior of transitional fountains with intermediate
Froude and Reynolds numbers, together with the associated entrainment and turbulence. In this work,
the transient behavior of axisymmetric fountains with 1 6 Fr 6 8 and 200 6 Re 6 800 is studied by direct
numerical simulation. It is found that at Re 6 200, there is little entrainment present at the upflow–
downflow interface and at the downflow–ambient interface, even for a value of Fr as high as 8; however,
at Re > 200, entrainment is present at these interfaces and the extent increases with Re, which clearly
demonstrates that entrainment is strongly dependent on Re whereas the contribution from the Fr effect
is relatively much smaller. The DNS results also show that zm, which is the maximum fountain penetra-
tion height, fluctuates, even when the flow reaches full development, due to the entrainment at the
upflow–downflow and the downflow–ambient interfaces, and the averaged zm scales with Fr
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1 < Fr 6 8 and 100 6 Re 6 800.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Fountain flows are common both in nature and in industrial and
environmental settings. They are jet flows with a buoyancy force
acting in the direction opposite to the jet direction. When a dense
fluid is steadily injected upward into a miscible lighter ambient
fluid, or a light fluid is directed downwards into a miscible dense
ambient fluid, a fountain flow occurs.

In a quiescent homogeneous ambient fluid, the fountain behav-
ior is predominantly governed by the Reynolds number Re, Froude
number Fr, and Prandtl number Pr, defined as

Re ¼ V0R0

m
; Fr ¼ V0

½R0gðq0 � qaÞ=qa�
1=2 ; Pr ¼ m

j
; ð1Þ

where R0 is the nozzle radius at the fountain discharge source, V0 is
the mean discharge velocity at the source, g is the acceleration due
to gravity, q0 and qa are the densities of jet fluid and ambient fluid at
the source, and m and j are the kinematic viscosity and thermal dif-
fusivity of fluid, respectively.

If the role played by the discharge momentum flux is much
more important than that by the negative buoyancy flux (i.e., when
Re > 1000 and Fr� 1), the fountain flow will become turbulent
quite close to the discharge source. For such a turbulent fountain,
after its initiation, the first pulse of fluid looks rather like a light
ll rights reserved.

ering, James Cook University,
1; fax: +61 7 4781 6788.
starting plume, with a vortex-like front and nearly steady plume
behind, as shown by the experiments conducted by Turner [1].
The velocity of the rising denser fluid is reduced gradually by the
negative buoyancy until the front of this first pulse of fluid comes
to rest at a temporary maximum fountain height (called the initial
fountain height). After that, the flow collapses and falls back as an
annular plunging plume around the upward flow. The downflow
continues to mix with the ambient while also interacting turbu-
lently with the upflow, which restricts the rise of further fluid
and therefore reduces the initial height to a smaller final fountain
height, and then the flow becomes steady. This final height is cus-
tomarily defined as the maximum fountain penetration height. The
experiments also show that the maximum fountain penetration
height at full development is not constant, but fluctuates slightly
and randomly.

The flow behavior of a turbulent fountain has been widely ex-
plored since the pioneering study of Morton [2,3]. One predomi-
nant parameter characterizing the flow behavior of a fountain is
the maximum fountain penetration height, Zm, and dimensional
consistency requires [1]

zm ¼
Zm

R0
¼ CFr; ð2Þ

where zm is the dimensionless form of Zm and C is a constant of pro-
portionality. This scaling was confirmed by the experiments of
Turner [1], who discharged salt jets into fresh water to produce a
set of turbulent fountain flows with 0.5 < Fr < 12 and obtained
C = 2.46 for the final height. Many subsequent studies on turbulent
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Nomenclature

C, C1, C2, C3 constants of proportionality
Fr Froude number
g acceleration due to gravity
H dimensionless height of computational domain
L dimensionless width of computational domain
n constant defined in Eq. (3)
p dimensionless pressure
Pr Prandtl number
r dimensionless radial coordinate
ru dimensionless upflow width
rw dimensionless fountain width
R0 nozzle radius at fountain source
Re Reynolds number
t time
Ta ambient fluid temperature
T0 jet fluid temperature at fountain source
u dimensionless radial velocity
v dimensionless axial velocity

V0 jet fluid vertical velocity at fountain source
z dimensionless axial coordinate
zm dimensionless maximum fountain penetration height
zm time-averaged value of zm at full development
zm,i dimensionless initial maximum fountain penetration

height
Zm maximum fountain penetration height

Greeks
h dimensionless temperature
j thermal diffusivity
m kinematic viscosity
qa ambient fluid density
q0 jet fluid density at fountain source
r mean standard deviation
rðzmÞ standard deviation of zm

s dimensionless time
si dimensionless time for fountain to attain zm,i
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fountains have also confirmed this scaling, although a range of C
values have been obtained for a wide range of Fr and Re values, as
summarized in, for example, List [4], Turner [5], Gebhart et al. [6],
Baines et al. [7], and more recently, Bloomfield and Kerr [8], Fried-
man and Katz [9], Jirka [10], and Kaye and Hunt [11].

On the other hand, if the discharge momentum flux of a foun-
tain flow plays the same or less important role than the negative
buoyancy flux, the flow will be in the laminar region. For these
weak fountains with small Fr values at the order of unity, it has
been shown that their flow behavior is considerably different from
that of turbulent fountains. For example, it has been shown that Zm

is of the same order as R0 for weak fountains while for turbulent
fountains, as shown above, Zm is much larger than R0; there are
no distinguishable upward and downward flows in weak fountains,
instead, the streamlines curve and spread from the fountain
sources, while in turbulent fountains, the upward and downward
flows are clearly distinguished; there is usually little entrainment
of the ambient fluid into the fountain fluid in weak fountains while
such an entrainment is one of the major activities occurring in tur-
bulent fountains; the Reynolds number affects the penetration
height in laminar fountains whereas in turbulent fountains it does
not. Furthermore, the experimental results of Zhang and Baddour
[12] demonstrate that for Fr < 7, the linear Fr scaling (2) does not
apply. Instead, the more appropriate scaling is found to be
zm = C1Fr1.3, where C1 is a constant of proportionality. With the
assumption that in addition to the momentum flux and buoyancy
flux the fluid viscosity also has an important affect on zm, Lin and
Armfield [13] showed that for weak fountains dimensional consis-
tency requires

zm ¼ C2FrRen; ð3Þ

where n is a constant which is found to be dependent on Fr and Re
and C2 is a constant of proportionality. For Fr � 1 (where the symbol
‘‘�” denotes ‘‘at the order of magnitude of”) and Re 6 500, a scaling
analysis undertaken by Lin and Armfield [13] showed that n = � 1/2,
which was validated by direct numerical simulation results with
0.2 6 Fr 6 1, 5 6 Re 6 500, and 0.7 6 Pr 6 10 [13,14]. For very weak
fountains with Fr� 1, Lin and Armfield [15] argued that the inertia
effect is very small and the fountain flow behavior is predominantly
controlled by the buoyancy flux and the fluid viscosity and it was
shown that dimensional consistency requires

zm ¼ C3
Fr
Re

� �2=3

; ð4Þ
where C3 is a constant of proportionality. This scaling was validated
by direct numerical simulation results with 0.0025 6 Fr 6 0.2 and
5 6 Re 6 500 [15].

Recently, Philippe et al. [16] carried out an experimental and
theoretical study on the evolution of laminar axisymmetric foun-
tains with Re < 100 and a wide range of Fr (typically Fr � 10) in
miscible homogeneous fluids. By using the generalized Bernoulli
theorem and based on two assumptions about the velocity profile
in the jet and the ratio of the characteristic width of the whole flow
with respect to the jet width, they derived an analytical solution
for zm, which, at steady state, has the following scaling relation
with Fr and Re

zm ’ 0:348FrRe1=2: ð5Þ

This is different from the scaling obtained by Lin and Armfield
[13] which shows that zm � FrRe�1/2. The reason for this difference
is apparently due to the different ranges of Fr and Re used for the
two studies. The results obtained by Lin and Armfield [13] are for
weak fountains with larger Re (5 6 Re 6 800) but a small and fixed
Fr (Fr = 1) whereas those obtained by Philippe et al. [16] are for
weak fountains with much smaller Re (0 < Re < 80) but quite large
Fr in a wide range (1 [ Fr [ 200). This is also true for other ranges
of Fr and Re, as demonstrated recently by Kaye and Hunt [11], who
obtained analytical solutions for zm,i, the initial fountain penetra-
tion height, for both small and large Fr values based on a plume
entrainment model. For large Fr fountains (Fr J 3), they obtained
zm,i � 2.46Fr, which agrees with the scaling (2); for small Fr foun-
tains (1 [ Fr [ 3), they obtained zm,i � 0.90Fr2; and for very small
Fr fountains (0 < Fr [ 1), they obtained zm,i � 0.94Fr2/3, which is in
agreement with the scaling (4) obtained by Lin and Armfield [15].
Nevertheless, all these different scaling relations obtained by dif-
ferent researchers reveal that the flow behavior of fountains, espe-
cially the onset of entrainment in transitional fountains with
intermediate Fr and Re values (1 [ Fr [ 20, 200 [ Re [ 1000),
which is the key to shed light on the turbulence generation mech-
anism in fountains, is not well described, which motivates us to
carry out this study.

In this study, we investigate the transient behavior of unsteady
axisymmetric fountains in quiescent homogeneous ambient fluids
with intermediate Fr and Re values (1 6 Fr 6 8 and 200 6 Re 6 800;
but in the Fr = 1 case, the upper limit of Re is extended to 2000) by
direct numerical simulation (DNS). The outline of the paper is as
follows. In Section 2, the physical system under consideration,
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governing equations, numerical methods and computational grids
used in the DNS are briefly described. In Section 3, the DNS results
for different sets of fountains are presented and discussed. And fi-
nally the conclusions are drawn in Section 4.
Table 1
The selected values of Fr and Re and L � H used in the four sets of DNS of
axisymmetric fountains

DNS set Fr Re L � H

Fr = 1 fountains 1 200 15 � 6
1 500 15 � 6
1 1000 15 � 6
1 1200 15 � 6
1 2000 15 � 6

Fr = 2 fountains 2 100 25 � 10
2 200 25 � 10
2 300 25 � 10
2 500 25 � 10
2 800 25 � 10

Fr = 4 fountains 4 200 60 � 40
4 500 60 � 40

Fr = 6 fountains 6 100 60 � 40
6 200 60 � 40
6 300 60 � 40
6 500 60 � 40
6 800 60 � 40

Fr = 8 fountains 8 200 60 � 60
8 500 60 � 60
2. Governing equations and numerical methods

The physical system under consideration is a vertical circular
container containing a Newtonian fluid initially at rest and at a
uniform temperature of Ta, the sidewall is non-slip and insulated
and the top is open. On the bottom center, an orifice with radius
R0 is used as the fountain discharge source. The remaining bottom
region is a rigid non-slip and insulated boundary. At time t = 0, a
stream of fluid at T0 (T0 < Ta) is injected upward into the container
from the source to initiate the fountain flow and this discharge is
maintained thereafter. The symmetry of the system geometry
and the low Re values considered ensure that the flow can be as-
sumed to be axisymmetric.

The flow is described by the following Navier–Stokes and tem-
perature equations, which are written in non-dimensional form in
cylindrical coordinates with the Boussinesq assumption as:

1
r

o

or
ðruÞ þ ov

oz
¼ 0; ð6Þ

ou
os
þ 1

r
o

or
ðruuÞ þ o

oz
ðvuÞ ¼ � op

or
þ 1

Re
o

or
1
r

o

or
ðruÞ

� �
þ o2u

oz2

( )
; ð7Þ

ov
os
þ 1

r
o

or
ðruvÞ þ o

oz
ðvvÞ ¼ � op

oz
þ 1

Re
1
r

o

or
r
ov
or

� �
þ o2v

oz2

" #
þ 1

Fr2 h;

ð8Þ

oh
os
þ 1

r
o

or
ðruhÞ þ o

oz
ðvhÞ ¼ 1

RePr
1
r

o

or
r
oh
or

� �
þ o2h

oz2

" #
; ð9Þ

where all lengths, velocities, times, pressures, and temperatures are
made dimensionless by R0, V0, R0/V0, q0V2

0, (T0 � Ta), respectively.
The governing equations are discretized on a non-staggered

mesh using finite volumes, with standard second-order central
difference schemes used for the viscous, pressure gradient and
divergence terms. The QUICK third-order upwind scheme is used
for the advective terms. The second-order Adams-Bashforth
scheme and Crank-Nicolson scheme are used for the time integra-
tion of the advective terms and the diffusive terms, respectively.
To enforce the continuity, the pressure correction method is used
to construct a Poisson’s equation which is solved using the pre-
conditioned GMRES method. Detailed descriptions of these
schemes were given in [17], and the code has been widely used
for the direct simulation of a range of buoyancy dominated flows,
including the travelling waves in natural convection in a cavity
[18], weak fountain flows [13–15,19], and unsteady natural con-
vection flows [20–22].

To ensure that suitable resolutions are maintained in the
numerical simulations, non-uniform computational meshes have
been used which concentrate points in the regions near the bound-
aries and with high gradients of temperature and velocities and are
relatively coarse in the remaining regions. The constructed meshes
have 296 � 299 grid points for the Fr = 1 simulations, 298 � 297
grid points for the Fr = 2, 4 and 6 simulations, and 298 � 299 grid
points for the Fr = 8 simulations. The time steps of 10�4 and
2.5 � 10�4 are used for the Fr = 1 and 2 simulations, whereas
5 � 10�5 is used for the Fr = 4, 6 and 8 simulations, respectively,
where the time steps are made dimensionless by R0/V0. An exten-
sive mesh and time-step dependency analysis has been carried out
to ensure that the solutions are accurate with minimal grid and
time-step dependent error.
3. DNS results and discussions

To show the effects of Fr and Re on the onset of entrainment in
fountain flows, four sets of DNS of axisymmetric fountains in qui-
escent homogeneous fluids with selected values of Fr and Re have
been carried out. The selected values of Fr, Re and L � H used for
these cases are listed in Table 1, where L and H are the dimension-
less width and height of the computational domain which is one
half of the physical domain (L and H are made dimensionless by
R0). The Fr = 1, 2 and 6 fountains have been chosen to show the ef-
fect of Re on small, medium, and large Fr fountains, respectively,
whereas the Fr = 4 and 8 fountains have been chosen to give fur-
ther results. As the effect of Pr is not included in this study, a fixed
Pr = 7 has been used in all DNS.

The predominant parameters characterizing the transient foun-
tain behavior are the dimensionless maximum fountain penetra-
tion height zm as defined above, the upflow width ru, and the
fountain width rw. The parameters ru and rw, both made dimen-
sionless by R0, denote, respectively, the location of the upflow–
downflow interface at which the vertical velocity of the fluid be-
comes zero, and the location of the downflow–ambient interface
where the fluid temperature is 1% of the temperature difference
between the jet fluid and the ambient fluid at the source. The def-
initions of these parameters are given in Fig. 1, where typical ver-
tical profiles of ru and rw at full development are presented for the
specific cases of Fr = 6 at Re = 200 and 600, respectively.

3.1. Temperature contours

To illustrate the transient flow behavior of the small, medium,
and large Fr fountains, Figs. 2–4 present the evolution of tempera-
ture contours for the Fr = 1 fountains, 2 fountains and 6 fountains,
respectively.

From the left column of Fig. 2, which presents the snapshots of
temperature contours at s = 1, 5, 10, 20 and 40 for the Fr = 1 foun-
tains at Re = 500, it is evident that during the whole evolution of
the fountain, there is essentially no entrainment between the jet
fluid and the ambient fluid. This is true for the Fr = 1 fountains at
a Reynolds number as high as 1000, as demonstrated in the right
column of Fig. 2, which presents the snapshots of temperature con-
tours at s = 40 for the Fr = 1 fountains at Re = 200, 500, 1000, 1200
and 2000, respectively. However, the figure also shows that when
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Fig. 1. Typical vertical profiles of ru and rw at full development for the Fr = 6 fou-
ntains with: (a) Re = 200 and (b) Re = 600, and the definitions of zm, ru, and rw.
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Re P 1200, entrainment is present in the fountains, although
mainly at the interface between the downflow of the jet fluid
and the ambient fluid.

When the Froude number increases, as illustrated in Figs. 3 and
4 for the Fr = 2 and 6 fountains, respectively, entrainment is pres-
Fig. 2. Temperature contours for the Fr = 1 fountains. The left column is for Re = 500 a
ent for a Reynolds number as low as 200 and the extent of entrain-
ment is found to approximately increase with Re. Similar
phenomena are also found for the Fr = 4 and 8 fountains, although
the snapshots for these fountains are not presented to avoid
repetition.

3.2. Fountain penetration height

The time series of zm for the Fr = 1 fountains at Re = 200, 500,
1000, 1200 and 2000 are presented in Fig. 5, where it is observed
that at the early stage of evolution (when s < 2), all five time series
of zm are essentially the same. In fact, it can be further observed
that the three time series at Re P 1000 are essentially the same un-
til s ’ 12, at which time the upflows and downflows in the foun-
tains are fully developed. However, the time series for Re 6 500
begin to deviate from the higher Re ones when s > 2, and the devi-
ation increases when Re is reduced, reaching its maximum when
the fountain attains the initial maximum penetration height zm,i.
Nevertheless, the deviation is quite small as the maximum devia-
tions presented in the time series at Re = 200 and 500 are only
3.4% and 1.7%, respectively, from the higher Re results and all time
series reach their individual zm,i at almost the same time (s ’ 4).
Furthermore, if zm and s are scaled, respectively, by zm,i and si,
where si is the time to attain zm,i, it is seen, from Fig. 5b, that for
s 6 si all five scaled time series collapse onto a single curve. On
the other hand, when the fountains attain full development (when
s > 20), zm for Re 6 1000 is constant, whereas zm for Re > 1000 oscil-
t five specific times, and the right column is for five Reynolds numbers at s = 40.



Fig. 3. Temperature contours of the Fr = 2 fountains with Re = 200 (left column) and 500 (middle column) at s = 25, 75 and 125, and with Re = 100, 300 and 800 at s = 125
(right column).

Fig. 4. Temperature contours of the Fr = 6 fountains (left column) and 500 (middle column) at s = 100, 300 and 1000, and with Re = 100, 300 and 800 at s = 1000 (right
column).
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Fig. 5. Time series of zm for the Fr = 1 fountains: (a) raw data and (b) zm scaled by zm,i and s scaled by si.
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lates, with standard deviations of 0.008 and 0.017 over 20 6 s 6 40.
Hence, the DNS results show that Re has little effect on zm for the
Fr = 1 fountains when 200 6 Re 6 2000.

The time series of zm of the Fr = 2 fountains at Re = 100, 200,
300, 500 and 800 are presented in Fig. 6, which shows that when
s 6 15.8, all five time series of zm are essentially the same. Never-
theless, the time series with Re = 100 and 200 reach their individ-
ual zm,i at about s = 35 and 35.4, although those with Re = 300, 500
and 800 reach their individual zm,i almost at the same time (at
s ’ 31). Furthermore, it is observed that zm,i increases slightly with
Re, from 3.592 at Re = 100 to 4.95 at Re = 800. At full development
(when s > 70), zm with Re = 100 and 300 oscillates a little bit, with a
very small standard deviation of 0.068 and 0.038, respectively, over
75 6 s 6 150. However, zm with Re P 500 oscillates considerably,
with standard deviations of 0.201 and 0.372 for Re = 500 and
800, respectively, over 75 6 s 6 150. The averaged values of zm

of these Fr = 2 fountains at full development are 3.702, 4.094,
3.699, 4.304 and 3.926 for Re = 100, 200, 300, 500 and 800, respec-
tively, indicating that Re has little effect on the averaged values of
zm of these Fr = 2 fountains. Nonetheless, it should also be noted
that zm of the Fr = 2 fountains at Re = 200 oscillates significantly
at full development, with a large standard deviation of 0.222 over
75 6 s 6 150, which is much larger than that at Re = 300, and even
a little bit larger than that at Re = 500. It is also observed that the
Re = 200 oscillation is regular with a periodic or quasi-periodic
behavior, whereas the Re = 500 oscillation is irregular with a
non-periodic chaotic structure. Further study of animations for
Re = 200 and 500 suggests that separate mechanisms are responsi-
ble for the oscillatory behavior at each Re. The Re = 200 flow exhib-
its a periodic bobbing motion, whereas the Re = 500 flow appears
to be driven by an instability in the shear layer between the foun-
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Fig. 6. Time series of zm of the Fr = 2 fountains.
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Fig. 7. Time series of zm for the Fr = 6 fountains: (a) ra
tain core and falling flow. It is therefore considered likely that the
Re = 200 flow is driven by a narrow banded instability which, at
this Re only of those considered, exhibits a single mode resonance.
The instability driving the Re = 500 flow would appear to be broad
banded with a range of unstable modes leading to the observed
non-periodic, chaotic behavior. The Re = 300 flow is below the crit-
ical Re for the occurrence of the broad banded instability occurring
at Re = 500, and does not produce the resonant single mode behav-
ior observed at Re = 200. Hence, the DNS results show that at full
development Re affects the oscillation amplitude of zm of the
Fr = 2 fountains when Re P 500, although it has little effect on
the averaged value of zm.

The time series of zm for the Fr = 6 fountains at Re = 100, 200,
300, 500 and 800 are presented in Fig. 7, where it is observed that
when s [ 40, all five time series are essentially the same. However,
zm,i and si are found to increase steadily with Re, although the in-
crease rates are not large, from zm,i = 16.03 and si = 69.5 at
Re = 100 to zm,i = 20.96 and si = 102.3 at Re = 800, respectively. Nev-
ertheless, if zm and s are scaled, respectively, by zm,i and si, the
scaled time series of these Fr = 6 fountains will collapse onto a sin-
gle curve for s 6 si, as shown in Fig. 7b. The results also show that
at full development there are oscillations present in the time series
of zm when Re P 200 and the mean value of zm at full development
increases steadily with Re, from 20.2 at Re = 200 to 27.2 at Re = 800
over 500 6 s 6 1000. The amplitude of oscillations is also found to
increase with Re, with standard deviations of 0.147, 0.854, 2.499
and 2.891 over 500 6 s 6 1000 for Re = 200, 300, 500 and 800,
respectively. However, there is no oscillation present in the time
series of zm at Re = 100 and zm is constant (zm = 16.4) from
s = 500 to 1000. Hence, the DNS results show that Re has a trivial
effect on zm for Fr = 6 fountains only when Re [ 200 and when
Re > 200 its effect on zm becomes significant and the extent of this
effect increases dramatically with Re.

The DNS results also show that Re has a considerably effect on
zm when Re P 200 for the Fr = 4 and 8 fountains and the extent
of effect increases dramatically with Re, similar to that for the
Fr = 2 and 6 fountains as observed above.

3.3. Upflow and fountain widths

The Re effect on ru and rw of the Fr = 1 fountains is not trivial, as
illustrated in Fig. 2, where it is found that for Re > 1000 entrain-
ment is present at the interface between the downflow and the
ambient fluid as well as between the horizontal intrusion, which
moves outwards along the bottom floor, and the ambient fluid,
with the extent increasing with Re. The entrainment and associated
waves at the intrusion–ambient interface are characterized as
‘‘internal bores” and were explored in detail by Simpson [23].
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The Re effect on ru and rw for these Fr = 1 fountains is more clearly
seen in Fig. 8, where typical time series of ru and rw at z = 0.8 are
presented for the five Fr = 1 fountains considered. The results show
that non-trivial oscillations, which represent the entrainment, are
present in the full development time series of both ru and rw when
Re > 1000 and their amplitudes increase considerably with Re. Fur-
thermore, it is also found that the entrainment becomes stronger at
smaller z, as seen in Fig. 9 by the larger variation with respect to
the time average values, where the vertical profiles of ru and rw

of the Fr = 1 fountains at s = 20, 30 and 40 and their time-averaged
values over 20 6 s 6 40 are presented. When Re 6 500, the vertical
profiles of ru and rw at these times, as shown in Fig. 9a–d, are essen-
tially the same, and their smooth and well-defined shapes indicate
that there is no entrainment at the upflow–downflow interface and
at the downflow–ambient interface. Additionally, no entrainment
is found to be present at the intrusion–ambient interface for
Re 6 500. When Re P 1000, however, the shapes of the vertical
profiles of ru and rw at s = 20, 30 and 40 differ from each other
and become oscillatory, especially in the small z regions, and the
differences and the oscillations increase with Re, as shown in
Fig. 9e–j, indicating that entrainment occurs in these regions of
the interfaces.

Re is also found to have a large effect on ru and rw for Fr = 2
fountains, as shown in Fig. 3, where it is clearly seen that when
Re P 500 entrainment is present at the upflow–downflow inter-
face, at the downflow–ambient interface and at the intrusion–
ambient interface, and the extent increases with Re. More specifi-
cally, as shown in Fig. 10, where the time series of ru and rw of
the Fr = 2 fountains with 100 6 Re 6 800 at z = 1.6 are presented,
it is shown that significant oscillations are present in the full devel-
opment time series of both ru and rw when Re P 500 and the oscil-
lation amplitudes increase considerably with Re, with standard
deviations of 0.167 and 0.482 in ru and 0.21 and 0.81 in rw for
Re = 500 and 800, respectively, from s = 75 to 150. However, the
oscillation amplitudes of these Fr = 2 fountains at Re = 100 and
300 are very small, with standard deviations of 0.025 and 0.03 in
ru and 0.019 and 0.02 in rw for Re = 100 and 300, respectively, over
the same time period, clearly showing that essentially no entrain-
ment is present at Re = 100 and 300. Nevertheless, similar to zm, it
is also seen that large oscillations are present in ru and rw at
Re = 200, as shown in Fig. 10, with standard deviations of 0.119
in ru and 0.161 in rw over 75 6 s 6 150, indicating that non-trivial
entrainment is present in this Fr = 2 fountains at Re = 200, due to
the same mechanisms described above.

The above observation of the Re effects on ru and rw of the
Fr = 2 fountains are found to be true at other heights as well. In
fact, the results shown in Fig. 11, where the vertical profiles of
ru and rw of the five Fr = 2 fountains at s = 100, 125 and 150 as
well as their averaged values over 75 6 s 6 150 are presented,
show that all profiles presented in each of Fig. 11a, b, e and f
for Re = 100 and 300, are essentially the same, meaning that the
Re effect is negligible at these Re. The smooth and well-defined
shapes of these profiles and the temperature contours presented
in Fig. 3 also indicate that there is no entrainment present in
these fountains. However, when Re P 500, as shown in
Fig. 11g–j, the profiles at the three specific times differ from each
other and oscillations are present in the profiles, with the extent
of the differences and oscillations increasing significantly with Re,
suggesting that large entrainment is present at the upflow–down-
flow interface, at the downflow–ambient interface, at the intru-
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sion–downflow interface, and occasionally even at the upflow–
ambient interface when the upflow penetrates the downflow
and directly entrains the ambient fluid.

Similar Re effects are also found on ru and rw for the Fr = 6
fountains, as shown as an example in Fig. 12, where the typical
time series of ru and rw at z = 10 are presented for the five
Fr = 6 fountains. The results show that at this specific height,
when Re 6 200, ru and rw at full development (i.e. when
s J 300) are constant, with ru = 1.411 at both Re = 100 and 200
and rw = 2.764 and 2.595 at Re = 100 and 200, respectively, indi-
cating that Re has a negligible effect on ru and rw when Re 6
200. Furthermore, as there is no oscillation present in the full
development time series of ru and rw when Re 6 200, there is no
entrainment at the interfaces of the upflow–downflow, the down-
flow–ambient, and the intrusion–ambient, which is also clearly
shown in Fig. 4. Hence, even for Fr as large as 6, there is no
entrainment in the fountains when Re 6 200. Nevertheless, oscil-
lations are present in the full development time series of both ru

and rw when Re P 300, and their amplitudes are found to increase
substantially with Re, with standard deviations of 0.093, 0.245
and 0.387 in ru and 0.078, 0.313 and 0.961 in rw over
500 6 s 6 1000 when Re = 300, 500 and 800, respectively. Entrain-
ment occurs at the interfaces of the upflow–downflow, the down-
flow–ambient, and the intrusion–ambient, and the extent
increases with Re, as evident in Figs. 4 and 12. In the case of
Re = 800, it is further seen from Fig. 12i and j that at some instants
ru is even larger than rw, indicating that the upflow penetrates the
downflow and directly entrains the ambient fluid. It is expected
that this upflow–ambient entrainment will become stronger
when Re is further increased.

The above observations are also found to be true at other heights
as well. Fig. 13 presents vertical profiles of ru and rw of the five Fr = 6
fountains at s = 500, 750 and 1000 as well as their averaged values
over 500 6 s 6 1000. It is seen that all profiles presented in each of
Fig. 13a–d, where Re 6 200, are essentially the same, meaning that
the Re effect is negligible when Re 6 200. The smooth and well-de-
fined shapes of these profiles and the temperature contours pre-
sented in Fig. 4 also suggest that there is no entrainment present
in these low Re fountains, even at Fr as high as 6. However, when
Re P 300, as shown in Fig. 13e–j, the profiles at the three specific
times differ from each other and the differences are found to in-
crease significantly with Re. The oscillatory shapes of these profiles
and the temperature contours presented in Fig. 4 mean that entrain-
ment is present at the upflow–downflow interface, at the down-
flow–ambient interface, at the intrusion–downflow interface, and
even at the upflow–ambient interface at some instants.

The DNS results also show that all above-mentioned observa-
tions on ru and rw obtained for the Fr = 2 and 6 fountains are true
for the Fr = 4 and 8 fountains. Hence, it can be concluded that for
Fr P 2 fountains Re has a little effect and there is little entrainment
in the flow even when Fr is as high as 8 when Re 6 200, but its ef-
fect and the entrainment become substantial when Re P 200, as
considerable entrainment is present at the upflow–downflow
interface, at the downflow–ambient interface, at the intrusion–
downflow interface, and even at the upflow–ambient interface at
some instants.
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3.4. Steady state and fluctuations

At full development, the entrainment at the upflow–downflow
interface and at the downflow–ambient interface at a specific
height z are well quantified by the respective standard deviations
in the full development time series of ru and rw at z over a period
of time. The mean standard deviations r of ru and rw for all the
fountains considered here are presented in Fig. 14. For the Fr = 1,
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2, 4 and 8 fountains, the averages are obtained over 0.4 6 z 6 1.2
from s = 20 to 40, 0.6 6 z 6 3.2 from s = 100 to 150, 2 6 z 6 10 from
s = 300 to 800, and 3 6 z 6 28 from s = 750 to 1150, respectively.
For the Fr = 6 fountains, the averages are obtained over
3 6 z 6 15 (for Re = 100), 3 6 z 6 18 (for Re = 200 and 300),
3 6 z 6 20 (for Re = 500), and 4 6 z 6 25 (for Re = 800), all from
s = 500 to 1000.

From this figure, it is clearly seen that for the Fr = 1 fountains,
when Re 6 500, the mean standard deviations are very small
(r < 0:002) and are essentially independent of Re, indicating that
there is essentially no entrainment present at the interfaces, which
is in agreement with the above observations. However, when
Re P 1000, the mean standard deviations of both ru and rw are
not trivial and increase substantially with Re. The data are best fit-
ted by the following power-laws:

r ¼ 4:08� 10�7Re1:60; ð10Þ

for ru and

r ¼ 8:23� 10�9Re2:14; ð11Þ

for rw, respectively, which clearly show that entrainment is present
at both the upflow–downflow interface and the downflow–ambient
interface, and their extent increases with Re, which is again in
agreement with the above observations.

For the Fr = 2 fountains, the results show that when Re = 100
and 300 the mean standard deviations are negligible with
r < 0:036, indicating that there is essentially no entrainment pres-
ent at the interfaces, which is in agreement with the above obser-
vations. However, when Re P 500, the mean standard deviations of
both ru and rw are large, with r ¼ 0:116 and 0.363 in ru and
r ¼ 0:136 and 0.74 in rw for Re = 500 and 800, respectively. There-
fore, the mean standard deviations in both ru and rw of these Fr = 2
fountains at Re P 500 increase considerably with Re, clearly show-
ing that entrainment is present at the upflow–downflow interface
and at the downflow–ambient interface and their extent increases
dramatically with Re, which is again in agreement with the above
observations. However, similar to the above-observed large value
of the mean standard deviation of zm when Re = 200, large standard
deviations of 0.098 and 0.136 are found in ru and rw, respectively,
over 0.6 6 z 6 3.2 and over 100 6 s 6 150 for the Fr = 2 fountains
at Re = 200. Similar observations on the mean standard deviations
r of ru and rw are also found for higher Froude number fountains.
As shown in the figure, for all Fr P 2 fountains considered, the
DNS results show that the mean standard deviations of both ru

and rw are best fitted by the following power-laws:

r ¼ 3:39� 10�5Re1:38; ð12Þ

for ru and

r ¼ 3:72� 10�6Re1:79; ð13Þ

for rw, respectively, which clearly show that entrainment is present
at both the upflow–downflow interface and the downflow–ambient
interface, and their extent increases with Re, which is again in
agreement with the above observations.

Fig. 15 presents zm, which is plotted against Fr3/2Re1/4, and rðzmÞ,
which is plotted against Re, for all Fr and Re considered, where zm is
the time-averaged value of zm at full development and rðzmÞ is its
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standard deviation. It is seen that the DNS results show that zm can
be approximated by the following empirical relation:

zm ¼ 0:359Fr3=2Re1=4; ð14Þ

and rðzmÞ increases monotonically with Re when Fr > 2, which can
be approximated by the following empirical relation:

rðzmÞ ¼ 9:17� 10�6Re2: ð15Þ

The scaling relation obtained here shows that the fountain
height is dependent on both Fr and Re, as has been observed previ-
ously. However the specific power-law relations have not been ob-
tained previously. It is noted that the Fr and Re values used in this
study were chosen to give flows in the transition regime, whereas
most previous studies considered either fully turbulent or steady
laminar flows. The Re dependency in particular is seen to vary sig-
nificantly. Lin and Armfield [15] reported an inverse relationship
between fountain height and Re for very weak fountains with
Re < 500, while for strong, fully turbulent fountains no Re depen-
dency is observed. It may be hypothesized that in the case consid-
ered here the increase in entrainment associated with an increase
in Re leads to reduced negative buoyancy in the downflowing fluid,
mitigating the effect of the downflowing fluid constraining the up-
ward flowing fluid in the fountain core.
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4. Conclusions

The DNS results show that unsteady axisymmetric fountains in
quiescent homogeneous ambient fluids with intermediate Fr and
Re values (1 6 Fr 6 8 and 200 6 Re 6 800) have the following tran-
sient flow behavior:

(a) At full development, entrainment at the upflow–downflow
interface and at the downflow–ambient interface at a spe-
cific height z is well quantified by the respective standard
deviations in the time series of ru and rw at z over a period
of time at full development.

(b) For the Fr = 1 fountains, when Re 6 500, it is found that the
mean standard deviations are very small and are indepen-
dent of Re, indicating that there is essentially no entrain-
ment present at the interfaces. However, when Re P 1000,
the mean standard deviations of both ru and rw are not trivial
and increase substantially with Re (approximately in a
power-law fashion), clearly showing that entrainment is
present at both the upflow–downflow interface and the
downflow–ambient interface and their extents increase with
Re.

(c) Re has a large effect on ru and rw for the Fr P 2 fountains,
especially when Re P 500, at which entrainment is present
at the upflow–downflow interface, at the downflow–ambi-
ent interface and at the intrusion–ambient interface, with
the extent increasing with Re (also approximately in a
power-law fashion). However, when Re 6 200, the Re effect
diminishes even for Fr as high as 8, indicating that little
entrainment is present at the upflow–downflow interface,
at the downflow–ambient interface and at the intrusion–
ambient interface. It is therefore concluded that Re has a pre-
dominant effect on entrainment present in fountain flows,
whereas the affect from Fr is only secondary.

(d) The full development zm, which is the time averaged zm, has
an empirical relation with Fr3/2Re1/4, and its standard devia-
tion, rðzmÞ, increases monotonically with Re when Fr > 2,
with an empirical relation with Re2.

It should be noted that the quantitative dependence of the on-
set of entrainment on Fr and Re (especially the relation between
Fr and the critical Re for the transition) can be, and should be,
sought with much wider ranges of Re and Fr and with three-
dimensional DNS in the future work. It is also crucial in the fu-
ture work to develop quantitative entrainment coefficients to
quantify the extent of entrainment present in these transitional
fountains.
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